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Aim 
There are many different methods and techniques when approaching the analyses of population- 

based cancer survival data, and these can sometimes produce significantly different answers. The 

aim of this brief Standard Operating Procedure (SOP) is to make a recommendation on the best 

approach to analysing cancer survival data. It includes some background to cancer survival analyses, 

commonly used and recommended methods, and the latest training courses available for further 

study, along with relevant references. 

This public access document is intended to be used by those cancer and public health analysts 

involved in the analysis of population based cancer survival primarily in the United Kingdom (UK) and 

Ireland, but also internationally. It is hoped that it will also be of wider interest to those tasked with 

compiling, understanding and interpreting cancer survival results and the different methods used to 

calculate these. For comparison, the PHE cancer survival analysis defaults are included (Appendix A) 

in this SOP. 

If anything here is unclear or you feel that important information has not been included then we 

would like to hear from you. Please email: f.j.bannon@qub.ac.uk. 

 

Introduction 
National health systems strive to prevent people dying from cancer. This is primarily carried out in 

two ways. Firstly, by reducing the risks of people getting cancer in the first place, mainly by avoiding 

life-style choices known to be associated with higher risk of cancer, e.g. smoking. And secondly, by 

providing the best evidence-based ways to detect cancer and cure patients, or at least extend their 

lives after diagnosis.  Assessing how well the health system is achieving this is typically assessed by 

studying population-based incidence, mortality, and survival statistics; each statistic provides a 

different perspective on the cancer burden. Progress against cancer is reflected in reduced mortality 

– either by reducing incidence, increasing survival, or both. However, when comparing effectiveness 

of health systems in preventing cancer deaths between countries or time, it is desirable to have a 

measure that is consistently estimable and interpretable.  

Incidence is generally considered a reasonable measure of the effects of cancer risk factors in the 

general population, while survival is generally considered a good measure of curing or prolonging life 

for cancer patients; the two measures, with their different formal objects (the general population 

and the cancer patient population), are generally considered independent of one another. On the 

other hand, mortality rates are difficult to interpret as they measure the cumulative and combined 

aspects of incidence and survival in the recent past. Furthermore, cancer mortality rate comparison 

rests upon the assumption that death-registration practice is consistent between countries—an 

assumption considered untenable in large international studies. However, at times mortality rates 

are indispensable for measuring cancer burden when either incidence or survival statistics are 

inflated by over-diagnosis following over-detection (see below).  

The present SOP directs its attention on the survival of cancer patients following diagnosis, and 

hence the ability of the health system to cure cancer patients or prolong their life.  

Cancer survival estimates are important for several reasons: 
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• To predict the survival for recently diagnosed patients. 

• To assess the overall effectiveness of health systems; this includes public health programmes that 

raise the awareness of cancer symptoms and promote earlier diagnosis, screening, and efficient 

diagnosing and treating of cancer. 

• To compare survival between sub-populations (ethnicity, socio-economic status) or time (trends).  

 

Cancer survival estimation should be population-based, and reliant on complete and good quality 

data. The UK is widely acknowledged as having one of the most comprehensive cancer registration 

systems in the world. Regional cancer registries across the UK and Ireland (http://www.ukiacr.org/) 

have been collecting population-based cancer data for several decades.  Survival estimates that are 

derived from a sample of the population are susceptible to biases. For instance, it is generally easier 

to collect information on good-prognosis patients. It is never certain that a sample of a population is 

truly representative of the entire population.  For similar reasons, a population-based survival 

estimate should never be equated with survival estimates from randomised clinical trials in which 

highly-select patients, subject to inclusion and exclusion criteria, are treated within experimentally-

controlled treatment regimes.  

 

Survival is not a straightforward indicator. The cancer patient’s survival time, defined as the time 

between diagnosis and death, is sensitive to any factor that may affect either of these events. 

Considering the diagnosis event, screening and sensitive diagnostic techniques may lead to a cancer 

being diagnosed much earlier and asymptomatically, and therefore increase survival time even 

though the natural course of the disease remains unchanged – so called lead time bias. Another bias, 

length bias, occurs in screening programmes, where slow-growing, less aggressive tumours are more 

likely to be detected (success in detecting aggressive tumours is sensitive to the length of time 

between screenings); these cancers, which may never be life-threatening, will inflate cancer survival 

estimates. Considering the death event, if death information is not being matched correctly, this will 

extend patient survival time, and inflate survival estimates. As mentioned above, if these biases are 

known to be large, survival estimates can be biased; in this case, mortality rates are considered a 

more sound way of appraising cancer burden. 

Population-based observed or crude survival is a valuable statistic when advising patients about their 

prognosis; all causes of mortality are implied and this is appropriate as cancer patients can die from 

any cause. However, in order to assess health systems, it is desirable to remove the effect of 

competing causes of death which can differ markedly from country to country. Competing causes of 

death are approximately equal to population mortality rates (found in a national lifetable), and their 

removal in the estimation of survival leads to a quantity known as net survival. Net survival is a 

quantity better suited for international comparison, or sub-group analysis within a population. 

 

Further information on useful recent publications of cancer survival data are available in the 

National Cancer Intelligence Network (NCIN) report ‘What cancer statistics are available, and where 

can I find them?’ (http://www.ncin.org.uk/publications/reports/). This includes references to results 

within and for the UK as a whole, and for international comparisons. Other examples, cited at the 

end of this document (1–8), include: 

• Estimation of differences in survival by type of cancer, between the sexes, or between regions of 
a country 

http://www.ukiacr.org/
http://www.ncin.org.uk/publications/reports/default.aspx
http://www.ncin.org.uk/publications/reports/default.aspx
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• Time trends in survival 

• The number of avoidable premature deaths by ethnicity, region or socio-economic status, in 
comparison with another population or country where survival is higher 

• For certain cancers, the proportion of patients who may be considered “cured” 

 

Methods of estimating net survival 

Introduction 

Implicit in a survival estimate is a mortality rate. The living cohort of patients is continually being 

depleted by a mortality rate, according to the following formula (when the rate is considered as a 

continuous function of time): 

𝑆(𝑡) = 𝑒− ∫ 𝜆(𝑡)𝑑𝑡 

where t=time, S(t) is proportion of patients alive, or survival at t, ∫ λ(t)dt  is the cumulative mortality 

rate at time t. Cancer patients’ mortality rate, λ(t), is the sum of their cancer-related death or excess 

mortality, λE(t), and their competing causes of death [approximated by], λP(t)1, the background 

population mortality rate. Net survival (9) can be defined as the survival of cancer patients in the 

hypothetical situation in which cancer is the only possible cause of death, i.e. the effects of 

competing causes of disease, λP(t), are removed.  

Observable net survival 

If the underlying cause of death is accurately known, that is properly registered on the death 

certificate, for all cancer patients, observed net survival can be estimated by the cause-specific 

approach using the Kaplan-Meier method, in which deaths attributed to (“caused by”) the cancer are 

counted as events, while deaths attributed to other causes are censored. However, this approach 

can lead to a biased estimate of net survival because the censoring mechanism is driven partly by 

λP(t), which is often associated with λE(t), the quantity driving the net survival estimate. In practice, 

older patients who have high λE(t) often have high λP(t), and therefore more likely to be censored 

and therefore not contribute as they should to the net survival curve as follow-up time progresses. 

In this setting, the censoring process becomes “informative”. Moreover, it should be borne in mind, 

the cause of death as registered in death certificates may be inaccurate. 

Recommendation: avoid estimating observable net survival 

 

Relative survival 

Relative survival derives its name from its approach to estimating net survival as a ratio of observed 

(or crude) survival to ‘competing causes of death’ survival in cancer patients. If the observed 

mortality rate is the sum of excess mortality and ‘competing causes of death’ mortality rate,  λO(t)= 

                                                           
1 In this SOP, the subscript ‘P’ derived from population mortality rate, will be considered equivalent to 
competing causes of death (see section on ‘Lifetables’ for a more comprehensive explanation). The ‘P’ is 
retained as a reminder that this information is derived from a life table of population mortality rates. 
Therefore λP(t) will mean ‘competing causes of death’ mortality rates, SP(t) will mean survival from ‘competing 
causes of death’. 
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λE(t)+ λP(t), then the observed survival is the product2 of net survival and ‘competing causes of death’ 

survival,  so that: 

𝑆𝐸(𝑡) =
𝑆𝑂(𝑡)

𝑆𝑃(𝑡)
 

While this relationship is true for an individual cancer patient, it is not true on a cohort level unless 

every patient shared the same characteristics: sex, age, year of diagnosis. The most common relative 

survival estimator, Ederer II, proceeds by taking the patients alive at the start of an interval and 

estimating a) their observed survival over that interval, b) the mean of their individual probabilities 

of surviving that interval based on the ‘competing causes of death’ mortality rate. The two estimated 

quantities then form a ratio called [conditional] relative survival; the product of these ratios over all 

intervals gives the final relative survival estimate. There are two potential biases with this approach. 

Firstly, the population net survival should be the mean of a sum of individual patient ratios, not the 

ratio of two population ‘mean’ values (10). 
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Secondly, like the observed net survival estimator (see above), informative censoring is occurring in 

the Ederer II estimator also because the censoring mechanism is driven partly by λP(t), which is often 

associated with λE(t), the quantity driving the net survival estimate. When patients in survival 

estimation are homogeneous in their demographics, i.e. have similar age, same sex, year of 

diagnosis, the relative survival estimator becomes an adequate estimator of net survival. Typically, 

there is very little difference in age-standardised (see below) estimates of relative survival and net 

survival, demonstrating that age is the chief source of informative censoring. By age-standardising, 

conditional independence can be assumed3 meaning that there are no factors associated with both 

cancer mortality and ‘competing causes of death’ mortality other than those factors that have been 

controlled for in the estimation (e.g., via stratification, regression modelling or appropriate 

weighting). In the present SOP, we will continue to consider age-standardised relative survival as a 

useful estimator of net survival in circumstances where the version of software or computing 

capacity does not support other options. 

Recommendation: use age-standardised relative survival when Pohar-

Perme estimator equivalent is not available 

 

Pohar-perme net survival estimator 

A non-parametric approach, the Pohar-Perme estimator (PPE), addresses the biases mentioned 

above in the relative survival estimator in order to achieve a non-biased estimator of net survival 

(11, 12). At each observed event time [death or censoring] marking the end of an interval since the 
                                                           
2 𝑆𝑜(𝑡) = 𝑒− ∫ 𝜆𝑂(𝑡)𝑑𝑡 = 𝑒− ∫ 𝜆𝐸(𝑡)+𝜆𝑃(𝑡)𝑑𝑡 = 𝑒− ∫ 𝜆𝐸(𝑡)𝑑𝑡 × 𝑒− ∫ 𝜆𝑃(𝑡)𝑑𝑡 = 𝑆𝐸(𝑡) × 𝑆𝑃(𝑡) 

 
3 In age-standardised relative survival, there will still be some residual informative censoring occurring within 
the defined age-groups, but in practice any bias is so small that it can be ignored. 
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previous event, three quantities, namely, cumulative observed deaths and [expected] deaths from 

‘competing causes of death’, and the at risk population are inflated by inverse-weighting the 

individuals [in each quantity] with their individual probability of their surviving from deaths from 

‘competing causes of death’ since diagnosis, SP(t). Intuitively, the effect of the weights is to inflate 

the observed person-time and number of deaths in order to account for person-time and deaths not 

observed as a result of mortality due to competing causes (10). The three inflated quantities are 

combined to estimate cumulative excess mortality, and hence net survival. The individual inverse-

weighting addresses simultaneously the two biases mentioned in the relative survival estimate. The 

non-parametric PPE is data- and life table-driven, requiring no data modelling assumptions (see 

modelling approach below). This estimator is suitable for official statistics.  

It has been observed with the PPE method that in estimating long-term survival, the estimate can 

become unstable in the older patient cohorts (13). However, adherents of PPE claim that this simply 

reflects the inherent difficulty in estimating long-term (10-20 year) net survival in this age group. The 

number of patients in the risk group becomes small due to high competing causes of death at that 

age. In addition, the SP(t) weightings of these patients can vary widely because the ‘competing 

causes of death’ mortality rates vary much more with age in this age group. Based on these two 

realities, the particular deaths or the survival of some very old patients in a small risk group can have 

a large influence. The solution is to obviate such a situation by assessing whether the expected 

‘competing causes of death’ survival, i.e. survival constructed from life table mortality rates, of a 

cohort of cancer patients indicates that there are enough patients, independent of the excess 

mortality rates, to estimate net survival. While long-term (for example, 10 year estimates of patients 

>85, e.g. prostate cancer) age-standardised Ederer II survival estimates appear to be more stable, 

the level of bias present from the two biases aforementioned is unknown. 

Recommendation: use Pohar-Perme estimator as the preferred method of 

net survival estimation 

 

Modelling approach to net survival estimation  

In the modelling approach of net survival devised by Lambert and Royston (14), a fully-parametric 

model describes the relationship between net survival and follow-up time. The approach uses 

restricted cubic splines to capture the non-linear relationship between the continuously changing 

mortality rate and follow-up time4 ; this relationship can be allowed to vary for different types of 

patients (time-dependent effects). Each patient’s time-to-event in the analysis is offset by its 

‘competing causes of death’ mortality rate from the life table (at the time of the event) in order to 

give an unbiased estimate of the excess cancer rate.  

An adequately fitted model, can then predict the net survival of each patient at a fixed follow-up 

time, the mean of these predictions yields the population net survival at that fixed time. It is 

obviously important, that the fitted model accurately captures all the systematic (i.e. non-random) 

                                                           
4In fact the relationship modelled is presented below where the function 𝑠 {ln(𝑡) | 𝛾, 𝑘𝑂}   

represents restricted cubic spline function of ln(t) and x represent covariates, e. g. sex, age etc:  

log (∫ 𝜆(𝑡)𝑑𝑡) = 𝑠 {ln(𝑡) | 𝛾, 𝑘𝑂} + 𝑥𝑖𝛽 
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variation that arises from the demographic effects (year of diagnosis, sex, year, and follow-up time), 

in order to give an unbiased estimate of population net survival. Restricted cubic splines can also be 

used to describe any non-linearity in the effects and their interactions.  

A high degree of experience and expertise is required in such modelling. For example, decisions have 

to be made on (a) what covariates to  include, (b) how to model age (grouped or continuous), (c) if 

continuous, what functional form to use, (d) similar decision for other continuous variables (e.g. year 

of diagnosis), (e) whether to incorporate time-dependent effects and how to model these if so, (f) 

are interactions necessary, e.g. is it sensible to assume that the effect of calendar time of diagnosis is 

the same at each age of diagnosis. The approach is time-consuming, and each cancer site requires 

individual attention. However, it is an excellent research tool in the study of net survival. 

Recommendation: use modelling approach only with sufficient 

expertise 

 

Types of survival estimates5 
Aside from the method of estimating survival (see above), different types of survival estimates are 

distinguished by their timely use or recency of cancer registry information. The following example 

(Figure 1) shows the structure of a particular data set in which patients diagnosed during the period 

1995-2008 have been followed up for their vital status to the end of 2010. Numbers in the cells 

indicate the minimum number of complete years of follow-up data that are available for patients 

who were diagnosed in a given year between 1995 and 2008 (rows) and who survived to the end of 

a given year (column) up to the end of 2010. In Figure 1, four sets of survival information are 

identified corresponding to the four survival types explained below. Further information on the 

comparison of these approaches is published (15).  (Please print out this figure to view properly).  

 

                                                           
5 The nomenclature of the types of survival presented here is not universally agreed and hence we have placed 
terms in inverted commas to alert the reader. However, we have adopted the common meaning in cancer 
registries, all the while defining exactly what is meant.  

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

1995 0 1 2 3 4 5 6 7 8 9 10 1995

1996 0 1 2 3 4 5 6 7 8 9 10 1996

1997 0 1 2 3 4 5 6 7 8 9 10 1997

1998 0 1 2 3 4 5 6 7 8 9 10 1998

1999 0 1 2 3 4 5 6 7 8 9 10 1999

2000 0 1 2 3 4 5 6 7 8 9 10 2000

2001 0 1 2 3 4 5 6 7 8 9 2001

2002 0 1 2 3 4 5 6 7 8 2002

2003 0 1 2 3 4 5 6 7 2003

2004 0 1 2 3 4 5 6 2004

2005 0 1 2 3 4 5 2005

2006 0 1 2 3 4 2006

2007 ` 0 1 2 3 2007

2008 0 1 2 2008

Numbers in the cells indicate the minimum number of years of follow-up completed in a given calendar year by survivors diagnosed in the index year

Survival data used in 

hybrid analysis

Patients diagnosed 1995-2009 and followed up to 2010 or later
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Calendar years within which follow-up probabilities are used to estimate survival

Survival data used in 

period analysis
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Survival data used in 

cohort analysis

Survival data used in 

complete analysis

Figure 1: Patients diagnosed 1995-2008 and followed up to 2010 or later 
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 ‘Cohort’ approach 

The cohort approach identifies a cohort of patients, and follows them each up for the same length of 

time. All patients in the diagnosis period 1995-1999 have 10 years of follow-up by the end of 2009 

(stepped horizontal wedge bounded by a solid line in Figure 1). Each patient, irrespective of their 

actual year of diagnosis, will contribute survival information at each point in follow-up time that, 

taken cumulatively, makes up the survival estimate at 10 years. This approach, grounded on the full 

follow-up of a clearly-defined group of patients, is attractive when comparing patient survival 

experience between different populations of patients. 

However, the necessity to collect 10-years follow-up data on every patient in the diagnosis period 

means that cohort survival estimates summarises more historic information on patients than what 

the registry currently holds. The registry will have more up-to-date information on patient survival 

for follow-up time of less than 10 years of patients diagnosed more recently than the diagnosis 

period; the next approaches seek to incorporate this information. 

Recommendation: use ‘cohort’ approach when publishing standard and 

routine data tables, and when making international comparisons 

 

‘Complete’ approach 

The complete approach will take more recently diagnosed patients than the cohort approach to 

estimate survival (partially stepped horizontal wedge in Figure 1); hence using more completely the 

available information. For patients diagnosed 2000-2004, the ‘cohort’ approach can only estimate 

five-year survival, but with the ‘complete’ approach ten-year survival can be estimated. However, 

with the ‘complete’ approach, more information is available to estimate survival in the early follow-

up than late, leading to variation in statistical power along the survival curve. In addition, the 

estimation of survival in later follow-up uses proportionately more historic information than earlier 

follow-up, which can make interpretation of estimates difficult when survival over calendar time is 

rapidly changing for some cancers; this imbalance is not a feature of the cohort estimate. 

Recommendation:  Use cohort or period (see below) in preference to 

complete estimates as the former are more easily interpretable 

 

Period approach 

The period approach (16) estimates the excess mortality rates from deaths and person-time6 of 

follow-up in a defined calendar period (see gray-shaded area in Figure 1), whereas the cohort 

approach estimates excess mortality from deaths and person-time of follow-up in a defined cohort 

of patients. The person-time can be divided into intervals of follow-up time. Even if the ‘period’ is 

only one calendar year, person-time over the full range of follow-up (0-10 years) will be available. 

For instance, patients diagnosed [at least] 9 years before the period will be contributing person-time 

from [at least] 9 years follow-up time onwards for a year. By classifying the deaths and the person-

                                                           
6 Person-time is a measurement combining the number of persons and their time contribution in a study. It is 
the sum of individual units of time that the persons in the study population have contributed to the 
denominator of a mortality rate, for instance. 
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time by follow-up time it is possible to estimate a mortality rate over follow-up time, and hence a 

period survival estimate.  

The period estimate combines survival information up to 10 years after diagnosis that were 

observed within the period 2006-2008, but for patients who were diagnosed during the period 1996 

to 2008 (Figure 1, shaded area). This estimate can be interpreted as a prediction of ten-year cohort 

survival estimate for patients diagnosed during 2006-2008, on the assumption that the excess 

mortality rates remain stable from 2006 to 2018, when all patients will have at least 10 years of 

follow-up. 

Period survival uses more up-to-date data to estimate the long-term survival outcomes; this makes 

this estimate useful in advising patients of their prognosis. However, it still may not capture recent 

changes to survival that occur later after diagnosis. It is a measure analogous to the life-time risk of 

getting cancer (17), which uses the most recent age-specific incidence rates to predict the lifetime 

risk of getting cancer; however, when the cohort is followed-up, after many years, the true lifetime 

risk will have been determined also by changes in the incidence rates since the prediction was made. 

The period survival estimate is conceptually more difficult to explain than ‘cohort’ survival. 

Recommendation: use the ‘period’ approach for expert audiences or 

where most up-to-date prognostic information is needed 

 

Hybrid approach 

The hybrid approach (18) is used where the follow-up information is more recent (2010) than the 

incidence data (2008). A period estimate for 2008-2010 would have three years of available data to 

estimate excess mortality at two years or more of follow-up, but only one or two years of available 

data for earlier follow-up periods; the imbalance could supply potential for bias. By contrast, a 

hybrid estimate provides three years of available data for all follow-up since diagnosis, by combining 

the cohort approach up to two years after diagnosis (patients diagnosed 2007-2008) and the period 

approach for two or more years of follow-up (patients diagnosed 1999-2008; dotted outline). 

Hybrid survival uses the most up-to-date data to estimate the long-term survival outcomes, the most 

recent changes to survival outcomes that occur late after diagnosis is not captured, and this 

approach is the most conceptually difficult to explain. 

Recommendation: use only in the specialised circumstances requiring 

it, i.e. where death follow-up information is more recent that 

incidence 
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Data preparation for survival analysis 

Data quality 

A standard quality control procedure should ensure that tumour records meet basic criteria of data 

quality (e.g. not a duplicate, consistent tumour site/morphology/behaviour/patient sex). The 

International Association of Cancer Registries has ‘Check and Conversion Programs for Cancer 

Registries’ software that runs internal validation and consistency checks on tumour records (see: 

http://www.iacr.com.fr under ‘Support for registries’).  

 

Net survival estimates will be inflated if there is not complete and accurate follow-up of cancer 

patients’ living status. To ensure the best possible follow-up for all patients, it is necessary to check 

that all notifications of death have been received and recorded; this is more relevant in registries 

that do not perform a complete linkage of their incidence register to a national death register on a 

regular basis (e.g. annually). 

Inclusion and exclusion criteria 

Even when a tumour record is correct, there are still criteria to determine if the record should be 

included in the survival analyses. Ineligible records should be tabulated in order to document 

quality, and then excluded from survival analysis (19). Here is a list of the commonly applied 

inclusion and exclusion criteria. 

Inclusion criteria 

1. Age 15-99 years, i.e. includes adults (not children).  

2. Tumour topography code (as defined by either International Classification of Diseases (ICD) or 

International Classification of Diseases for Oncology (ICD0)) belongs to the appropriate definition 

of cancer site. Variations in coding definitions can affect survival estimates depending on the 

patient-prognoses arising from tumours included in the definitions. Only patients with primary 

tumours are included, i.e. tumours that have originated in the organ of the cancer site defined, 

and are not spread from another organ in the body (secondary). The patient’s survival time 

begins on the diagnosis date of their first primary tumour [of the cancer of interest] that 

occurred in the period [of diagnosis] of interest, e.g. 2000-2005. Patients are not excluded if they 

had 

• further primary tumours of the cancer of interest diagnosed later in the period of 

interest.   

• any primary tumour of another cancer site diagnosed in the period of interest.  

• any type of primary tumour diagnosed before or after the period of diagnosis.  

The rationale for these criteria is twofold. Firstly, with survival improving all the time, an 

increasing proportion of cancer patients will have had another cancer and not including them 

will bias-upwards the site-specific survival estimate. Secondly, in international studies, older 

registries are more likely than younger registries to register previous cancers, thus by not 

excluding patients who had a previous tumour a potential bias in country comparisons (20, 21) is 

avoided. 

http://www.iacr.com.fr/
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3. More complete guidance on dealing with multiple primaries, including definitions of 

synchronous tumours, is available at the Surveillance, Epidemiology, and End Results Program 

(SEER) website: http://seer.cancer.gov/tools/mphrules/. IARC has provided guidance also (22). 

4. Only patients with tumours of an invasive, primary, and malignant behavioural code (=3) in ICD 0 

(http://www.who.int/classifications/icd/adaptations/oncology/en/) are included. It is worth 

noting that sometimes in revisions of ICD 0, the behavioural codes have been changed. In 

ovarian cancer some behavioural codes 3 were reclassified as 1 (uncertain behaviour) when 

moving from the 2nd to 3rd edition of ICD 0; this has relevance when comparing historic estimates 

to recent estimates.  

5. Patients whose survival time is zero (date of diagnosis is the same as the date of death), but 

which are not Death Certificate Only (DCO) registrations (see 6 below), should be included in 

survival analyses. Stata’s stset command does not accept zero-day survivor patients, it is 

necessary to add one day to the recorded date of death to include these patients. 

Exclusion criterion 

6. The accuracy in estimating survival is highly dependent on correctly identifying and recording 

the first diagnostic episode. This is particularly important in cancers where the death certificate 

is the first notification of a cancer that a cancer registry may receive; thorough investigation of 

such cancers with hospitals and general practitioner (GP) practices may identify previous 

diagnostic episodes. If such earlier diagnostic episodes are not traced, cancer cases are called 

death certificate only (DCO) registrations and excluded from survival analysis. The PHE National 

Cancer Registration Service is currently implementing processes to follow up all death certificate 

notifications of cancer within three months. 

7. Exclude patient if the following information is missing or imputed: sex, date of diagnosis, date of 

birth or age. 

 

Recommended data processing for site-specific analysis:  

Include 

1. Patients aged between 15-99 years (inclusive) 
2. The earliest primary tumour in the period of diagnosis with 

eligible topography code  

3. Invasive, primary, and malignant behavioural code (=3) tumours 
Exclude 

4. Death certificate only (DCO) registrations  
5. Missing or imputed sex, date of diagnosis, date of birth or age 

information 

 

Life-tables 
When estimating net survival for a particular cancer, say kidney cancer, we need to remove the 

contribution of the ‘competing causes of death’ mortality rate (which includes death from other 

types of cancer). The general population mortality rates are a good approximation of the competing 

causes of death in kidney cancer patients, since the kidney cancer deaths will make up a negligible 

proportion of the general population rate. A life table tabulates the general population mortality 

http://seer.cancer.gov/tools/mphrules/
http://www.who.int/classifications/icd/adaptations/oncology/en/
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rate by various demographics usually age, sex, and calendar period, but also sometimes by sub-

region, ethnicity, socio-economic deprivation.  

It is important that the life table reflects the competing causes of death of the cancer patients 

otherwise there will be an under- or over- estimation of net survival. Therefore, when estimating 

survival by sub-groups in the population, such as socio-economic status, life tables that are specific 

for each socio-economic population sub-group should be used. Another example, in a comparison of 

cancer survival between the South West and the North East of England, it would be preferable to use 

the corresponding regional life tables, rather than a single national life table, since overall mortality 

in the North East is higher than in the South West. A similar argument applies to analysis of trends in 

survival – life tables for each calendar year are preferable to a single life table applied over a long 

period of time. Extra demographic variable classification in the life-table (for instance, life table by 

age, sex, calendar year, and socio-economic deprivation), correspondingly matched to the patients, 

will assign a more individualised ‘competing causes of death’ mortality rate to the patient. This will 

give rise to an even less biased net survival estimate, even if there is no intention to report survival 

by the extra demographic variables. 

There are various sources of published life tables, including the Office for National Statistics (23) and 

the World Health Organisation (24). Many life tables for the UK are also available on the Cancer 

Research UK Cancer Survival Group web-site (25), broken down by country and regional 

geographies, deprivation (usually by quintile, using Carstairs (26) or Townsend indices, or the Indices 

of Multiple Deprivation) and ethnicity (White, Black, South Asian), for all calendar years since 1971. 

The Cancer Survival Group (London School of Hygiene and Tropical Medicine) also has a suite of life 

tables catering for particular populations and calendar times 

(http://www.lshtm.ac.uk/eph/ncde/cancersurvival/tools/index.html).  

The calendar years during which follow-up occurs, i.e. up to the last matching of death information 

or the general censoring date, require a corresponding life-table. In the case of a national life-table 

not having the most recent year, the previous year is used again. 

Recommendation: Use the life-table that most closely matches the 

‘competing causes of death’ in the cancer patients; where possible 

match patients to a lifetable including region and socio-economic 

deprivation.  

 

Interval cut points 
The net survival estimate can, broadly speaking7, be put-together by 1) estimating the [excess] 

mortality at each event time and summing to give the cumulative mortality (and then survival, see 

PPE), or 2) by estimating cumulative mortality (or conditional [relative] survival) in piece-wise 

intervals and combining to give a survival estimate. In the case of the latter, interval cut points 

define the interval lengths, in which the excess mortality rate is considered constant over the 

interval; thus the relationship of excess mortality rate to follow-up time is described by a step-

function. Therefore, if the excess mortality rate is changing rapidly, the interval widths need to be 

narrower if the step-function is to remain an adequate description of the underlying continuous 

                                                           
7 A third approach is modelling the underlying excess mortality rate with a continuous parametric model. 
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function, λE(t). For lethal cancers such as those of lung or pancreas, the excess mortality will change 

quite rapidly early in the follow-up.  

The cut-points (breaks) for the intervals, within each of which survival will be separately estimated, 

should therefore be chosen to generate short (e.g. monthly) intervals at the beginning of follow-up, 

and longer intervals (e.g. quarterly, six-monthly or annual) thereafter. For example, in 2008 the 

Cancer Research UK Cancer Survival Group and colleagues (4) reported their methods for calculating 

10-year survival for 20 of the most common cancers. Their interval structure strategy was chosen as 

monthly up to 6 months after diagnosis, then at 3-monthly intervals up to 2 years after diagnosis, 6-

monthly during 2 to 5 years, then yearly up to 10 years.  

Strel (27, see Software and Worked Examples below) estimates relative survival using intervals. The 

estimates of excess mortality may be unreliable if there are very few patients or very few deaths (for 

example less than 10) within a given time interval, because the sparsity of data prevents 

convergence of the maximum likelihood algorithm. Strel has the capability to progressively group 

the time intervals, provided that estimates are maintained at 1, 5 and 10 years after diagnosis, so 

that convergence can be achieved. 

Interval cut points are also required if available survival time is not continuous (in days) but in 

discrete intervals (months or years). Dickman and Coviello (10) have implemented a PPE estimator 

when only such discrete survival time information is available.  

Recommendation for estimating survival using discrete interval 

approach: monthly up to 6 months after diagnosis, then at 3-monthly 

intervals up to 2 years, 6-monthly during 2 to 5 years, then yearly 

up to 10 years 

 

Age-standardisation 
Net survival of cancer patients is related to age at diagnosis in many cancer sites. Therefore, if two 

cohorts of cancer patients have a different age distribution or structure, their net survival will likely 

be different. Age-standardised net survival estimates are the estimates that would occur if that 

population of cancer patients had a standard population age structure. They are estimated by firstly 

estimating age-group specific survival estimates (e.g. 15-44, 45-54, 55-64, 65-74, 75+) which are then 

weighted by standard weights, which reflect the proportion of cancer patients in that age-group in 

the standard population, and summed to give an age-standardised survival estimate. Age-

standardised survival estimates allow us to compare territories, populations, or time periods such 

that any observed differences are not attributed to different age structure, but something else, e.g. 

health system, ethnicity. 

The International Cancer Survival Standard (ICSS) weights (28) are recommended for international 

comparisons of cancer survival (1, 2). The weights correspond to five age-groups that classify 

patients diagnosed from 15-99 years of age. Four sets of standard age weights were derived from 

discriminant  analysis which sought to find the smallest number of sets that would give age-

standardised estimates of survival across a range of different cancers that broadly reflect the 

unstandardised estimates. The same age weights can be used for men and women, and for different 

ethnicities. 
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The ICSS weights are an optimal set of weights derived from cancer patients in Europe. If looking at 

trends in a particular country or region over time, it might be more attractive to design a set of 

weights that reflect better the population structure in that region. In short, the adoption of weights 

in an analysis depends on the aim of the analysis being undertaken. 

The weights described above are sometimes referred to as external weights meaning that in some 

way they will remain fixed and imposed across regions or time periods, and thus allowing 

comparisons to be made. Survival estimates can be internally standardised meaning that weights 

reflect exactly the age-group proportions of cancer patients in the analysis. The reason for doing this 

is to produce an estimate of the unstandardised relative survival of all the patients, but removing the 

informative censoring arising from age mentioned above, and so be an adequate estimate of 

unstandardised net survival. 

The question arises when estimating an age group specific survival, usually the youngest age-group, 

what information threshold should be adopted below which survival is considered inestimable. An 

immediate solution is to collapse neighbouring age-groups, but with small regions, even with doing 

this, the question may still remain. A number of diagnostics have been suggested, e.g. the number of 

deaths, or number of patients surviving. However, both these measures depend on the excess 

mortality rate which can vary between cancer site, e.g. lung cancer versus prostate cancer. A 

diagnostic that is independent of excess mortality rate is the probability of their surviving from 

‘competing causes of death’ since diagnosis, i.e. SP(t), which is derived using life table information. 

Multiplying this probability by the number in the initial cohort will indicate the expected number of 

patients alive at time t surviving from ‘competing causes of death’. If this number is too small then it 

is likely impossible that excess mortality (and net survival) at time t is estimable, i.e. there are no 

patients in existence to die, irrespective of if they die from the cancer or ‘competing causes of 

death’. It is good practice also to graph the survival curve, and assess its stability. By doing this for a 

number of cancer sites, varying in prognosis, it should be possible to choose a general cut-off point 

defined by the expected number of patients alive at time t surviving ‘competing causes of death’ 

(<10, for instance). When an age-standardised survival estimate is un-estimable, the unstandardised 

estimate can be reported as the next best thing. 

Note that for estimating age-standardised incidence or mortality rates, the age structure of the 

general population is standardised, whereas with cancer survival it is the age structure of the cancer 

patient population. The weights used for age standardisation of cancer survival estimates are thus 

completely different from those required for standardising incidence or mortality rates.  

Recommendation: use the ICSS weights to age-standardise net survival 

estimates to maximise their comparative potential 

 

Recommendation: calculate the expected number of patients to survive 

the competing causes of death, and observe the survival curve, to 

check if survival is estimable 
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Software and worked examples 
We present several commands that are currently available in Stata for the estimation of net survival; 

in addition, the website for SEER*Stat net survival software is given. The different commands 

embody different approaches to estimating net survival, each with its own strengths and 

weaknesses. To assist analysts who might be new to ‘net survival’ estimation, Web Appendix 1 

(Note: under construction) describes worked examples of each command using the patient survival 

data from four different cancer sites (female breast, lung, malignant melanoma, and pancreas) 

registered in Northern Ireland. The do-files used to analyse the data can be downloaded from the 

appendix; the data files are available from the NICR. In addition, the net survival estimates obtained 

from each command are compared in order to gain insights into any differences. 

• strel (28) is a Stata command developed by Bernard Rachet and Milena Falcaro of the Cancer 

Research UK Cancer Survival Group, London School of Hygiene and Tropical Medicine (LSHTM), 

for the estimation of the excess mortality hazard and relative survival. It implements the 

maximum-likelihood estimation approach for individual records (9) and assumes the excess 

hazard to be a step-wise constant function. Version II of strel replaces the original command, 

and incorporates a multivariable functionality, enabling estimation of covariable-specific excess 

hazards of death. Categorical covariates can be incorporated into the model, allowing the user 

to obtain interval- and covariate-specific estimates of the quantities of interest; however, the 

model assumes proportional excess hazards between categories. It is particularly convenient for 

those who may not have strong statistical skills and who want to analyse very large data sets. 

 

• stpm2 (14) is a user-written Stata program written by Paul Lambert and Patrick Royston which 

employs restricted cubic splines to fit flexible parametric survival models. It is a flexible 

command that can be used to fit complex multi-variable models, time-varying effects and 

multiple time scales, and has a powerful post-estimation command for predictions. Internal 

age-standardisation can be performed using the postestimation –meansurv- option and 

external age-standardisation with the addition of the –meansurvwt()- option. 

 

• strs (10) is a user-written Stata program written by Paul Dickman and Enzo Coviello supports 

both cohort and period estimation, crude probabilities of death, relative/net survival using a 

number of approaches, and prepares data for tabular/graphical presentation and modelling. 

Details of all options can be found on the strs help file. 

Age-standardisation requires a set of survival estimates for each age group. It is not always 

possible to obtain an estimate for each combination of cancer, age group, sex and for example 

calendar year of diagnosis with small populations, because of the limited number of cases. 

Analysts should take extra care in these situations as the age standardised estimates using the 

standstrata option could be incorrect. 

 

• stns (29) is a user-written Stata program written by Michel Grzebyk and Isabelle Urmès that 

implements the method of net survival estimation proposed by Maja Pohar Perme, Janez Stare, 

and Jacques Esteve (11). Stata version 13 required for stns to carry out period survival.  
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strs (10) implements a modified version of the Pohar Perme estimator that is optimised for the 

situation where continuous survival times are not available.  

• The SEER*Stat website (http://seer.cancer.gov/seerstat/) contains software for implementing 

net survival. 

 

Recommended Stata software:  

1. stns for net survival using continuous survival time (days) 
2. strs for net survival using discrete survival time (months, 

years) 

3. strs for age-standardised or internally-standardised relative 

survival estimates (when stns is not an option) 

 

Secondary measures of survival 

Avoidable deaths 

Net survival reflects the excess mortality among cancer patients, over and above the background 

mortality. “Avoidable” cancer-related deaths are the number of deaths that would have been 

avoided by a time after diagnosis if net survival, at that time, were as high as that achieved by a 

comparable population (30). Trends in avoidable mortality can be seen as an overall comparative 

measure of progress in cancer control strategy of a country. Similarly, the public health impact of 

the differences in survival between deprivation groups can be addressed by considering the 

number (or proportion) of deaths attributable to cancer that might be avoidable if patients in all 

groups of society were to have the same survival as that actually observed for patients in the 

most affluent category (31). 

Estimating “cure” from cancer 

The proportion of patients who may be considered "cured" of the disease (the “cure fraction”), 

is a useful measure to monitor trends in survival. This proportion is estimated using a special 

type of statistical model: these ‘cure models’ (32) enable estimation of the level of the 

asymptote in a curve of relative or net survival as it approaches a plateau, indicating that the 

cancer patients surviving up to the point of "cure" no longer have significant excess mortality 

over that of the general population. 

 

  

http://seer.cancer.gov/seerstat/
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Training 
Cancer survival: principles, methods and applications (Cancer Survival Group, LSHTM 

http://www.lshtm.ac.uk/study/cpd/scspma.html) 

A one-week course on the principles, methods and applications of cancer survival using population-

based data, with lectures, computer-based analytic exercises with real data, review sessions and a 

session for participants to present their own work or ideas. Net survival is the main approach to 

analysis, with discussion of recent methodological developments (e.g. net survival). This course has 

been running since 2006, most recently in collaboration with IARC, Lyon. Further details, including 

dates and location, are available via the website. 

 

Statistical methods for population-based cancer survival analysis (http://cansurv.net/) 

An intensive 5-day course on the principles, methods and application of statistical methods in 

population-based cancer survival analysis. Central concepts will be covered, such as how to estimate 

and model relative survival, as well as recent methodological developments. The course consists 

primarily of lectures and hands-on computing sessions with a focus on individual instruction and 

discussion. It runs as part of the Summer School on Modern Methods in Biostatistics and 

Epidemiology. Further details, including dates and location, are available via the website. 

 

  

http://www.lshtm.ac.uk/study/cpd/scspma.html
http://cansurv.net/
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Appendix 1: PHE cancer survival defaults – for survival analyses performed 

in 2015/16. 
Version 1, 9/4/15 

This document details a set of processes that can be (but don’t have to be) followed to yield 

consistent cancer survival results. This document applies to analyses performed in 2015/16, for 

tumours diagnosed from 1995, and is expected to change over time. Three stages of survival analysis 

are identified below:  

Stage 1: pulling cohort from AV_TUMOUR using SQL 

1. The ICD10_02_3CHAR field should be used to filter the cohort of interest by tumour type. 

2. Filter for residents of England by looking for a first character of “E” in the LSOA11 code. 

3. Filter for a CREG_CODE which is one of the English registries  

4. Tumours diagnosed 1995-2011 should be joined to the ONS data via an inner-join to only 

include cases present in both CAS and in the ONS data. Outside this range of years just use 

the CAS records.  

5. Include only final registrations with STATUSOFREGISTRATION=’F’ 

6. Exclude known duplicates from historic ECRIC/THAMES boundary change. 

7. Limit ALIASFLAG in AV_TUMOUR to be equal to ‘0’ only to avoid including referenced-off 

duplicates still present in the patient table. 

8. (Don’t exclude tumours due to DCO status or tumour order at this point – wait until stage 2 

to allow the exclusion to be logged in the Stata output.) 

9. Check that all vital status update dates are after the censor date. If not then arrange for 

tracing of all cases with vital status date < censor date and merge traced deaths into cohort. 

Stage 2: processing cohort for analysis using Stata 

Note – the bulk of the exclusionary criteria are applied at this stage so that the number of 

exclusions and reason are captured by the Stata output. 

1. Drop cases that could not be traced.  

2. Drop DCOs 

3. Drop tumours if sex is unknown 

4. Drop tumours if diagnosis date is unknown (retain cases with imputed dates) 

5. Drop tumours if date of birth is unknown (retain cases with imputed dates) 

6. Drop tumours for persons aged <15 or >99 at diagnosis 

7. Drop second and subsequent tumours where the tumour has the same topography code as 

an earlier tumour in the period of the study.  Do this after exclusions above. 

8. Set zero-survivors survival time to 1 day. 

Stage 3: running survival analyses using Stata (currently assumes relative cohort survival)  

1. Use breakpoints of br(0(0.08333)0.5, 0.75(.25)1.75, 2(0.5)5, 6(1)11)  

2. Use LSHTM 2011 lifetables. 

3. For 2012 and 2013 cases just use the 2011 lifetables as they are. 

4. Merge lifetables using mergeby(year sex age GOR quintile) 
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5. If performing age standardisation use the Corazziari method and weightings. 

6. Do not report survival estimates based on less than 10 deaths in survival period.  


